МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕЛЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Чувашский государственный университет имени И.Н. Ульянова» «Академия электротехнических наук Чувашской Республики»

ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭНЕРГЕТИКИ, ЭЛЕКТРОТЕХНИКИ И ЭНЕРГОЭФФЕКТИВНОСТИ

Материалы III Международной научно-технической конференции

> Чебоксары 2019

УДК 621.3(06) ББК 31я43 П78

Редакционная коллегия:

В.Г. Ковалев, канд. техн. наук, профессор (гл. редактор);

Г.С. Нудельман, канд. техн. наук, профессор;

В.А. Щедрин, канд. техн. наук, профессор (зам. гл. редактора);

В.В. Афанасьев, д-р техн. наук, профессор;

Ю.М. Миронов, д-р техн. наук, профессор;

Г.П. Свинцов, д-р техн. наук, профессор;

А.А. Ильин, канд. техн. наук, доцент;

О.А. Онисова, канд. техн. наук, доцент

Печатается по решению Научно-технического совета Чувашского государственного университета

Проблемы и перспективы развития энергетики, электротехники и энергоэффективности: материалы III Междунар. науч.-техн. конф. – Чебоксары: Изд-во Чуваш. ун-та, 2019. – 618 с.

ISBN 978-5-7677-2998-2

Представлены статьи и доклады третьей Международной научнотехнической конференции, проведенной совместно с «Академией электротехнических наук Чувашской Республики», в которых приводятся и обсуждаются результаты актуальных научных исследований в области энергетики, электротехники и энергоэффективности, а также рассматриваются вопросы подготовки инженерных кадров.

Для преподавателей, аспирантов, магистрантов, студентов старших курсов энергетических специальностей вузов, инженернотехнического персонала предприятий и энергосистем.

ISBN 978-5-7677-2998-2

УДК 621.3(06) ББК 31я43

© Издательство Чувашского университета, 2019

ФУНДАМЕНТАЛЬНЫЕ ОСНОВЫ ГЛУБОКОГО ОБУЧЕНИЯ В РЕЛЕЙНОЙ ЗАЩИТЕ

Степанова Д.А., Наумов В.А., Антонов В.И., ЧГУ им. И.Н. Ульянова, ООО НПП «ЭКРА», Чебоксары, Россия.

Аннотация. Излагаются фундаментальные основы глубокого обучения релейной защиты, основанной на разделении множеств прецедентов различных режимов электрической сети на классы отслеживаемых и альтернативных режимов. Демонстрируется применение различных классификаторов для решения задачи разграничения режимов электрической сети.

Ключевые слова: классификация режимов электрической сети, обучение релейной защиты, глубокое обучение.

Введение

В традиционных методах релейной защиты характеристики срабатывания, разграничивающие отслеживаемые и альтернативные режимы, формируются по результатам либо расчетов, либо имитационного моделирования нормальных и аварийных режимов защищаемой электрической сети. Например, в реле сопротивления отслеживаемые и альтернативные режимы отображаются на плоскости контролируемых реле параметров в виде точек, характеризующихся координатами (R_j, X_j) . Необходимые для определения координат измеряемых реле параметры получают, например, с помощью методов адаптивного структурного анализа сигналов [1, 2].

В дальнейшем будем снабжать измерения релейной защиты класса отслеживаемых режимов признаком $y_j = 1$, а класса альтернативных — $y_j = -1$. Объект \mathbf{x}_j , обладающий соответствующим признаком y_j , будем называть прецедентом. Другими словами, обучение реле ведется на множестве прецедентов $(\mathbf{X}; \mathbf{y})$ обучающей выборки:

$$(\mathbf{X}; \mathbf{y}) = \{ (\mathbf{x}_1; y_1), \dots, (\mathbf{x}_j; y_j), \dots, (\mathbf{x}_n; y_n) \} =$$

$$= \{ (R_1, X_1; y_1), \dots, (R_j, X_j; y_j), \dots, (R_n, X_n; y_n) \},$$

где **у** – вектор признаков объектов множества **X**, $y_i \in \{-1,1\}$.

В классической теории селективность релейной защиты обеспечивается надлежащим выбором характеристик срабатывания, что может рассматриваться как процесс ее обучения. Целью обучения защиты является придание ей способности к классификации режимов электрической сети, заключающейся в разграничении отслеживаемых и альтернативных режимов. С этой точки зрения использование современных методов глубокого обучения для задач классификации режимов защищаемой электрической сети и обучения релейной защиты выглядит вполне обоснованным [3, 4].

Задачу обеспечения селективности защиты можно рассматривать как определение в темпе процесса принадлежности поступающих данных режима электрической сети к определенному классу в пространстве контролируемых параметров.

В задаче построения характеристик срабатывания традиционной релейной защиты усматриваются элементы теории искусственного интеллекта, если рассматривать характеристики срабатывания как инструмент при разграничении отслеживаемых и альтернативных режимов. Например, в случае реле сопротивления характеристика срабатывания в виде многоугольника (рис. 1) формируется с помощью ограничений-неравенств:

$$\langle \mathbf{w}_{i}, \mathbf{x}_{j} \rangle + w_{0i} \ge 0, \ (i = \overline{1,3}),$$

$$\langle \mathbf{w}_{i}, \mathbf{x}_{j} \rangle + w_{0i} \le 0, \ (i = 4).$$

$$(1)$$

Глубокое обучение релейной защиты

Задача нахождения необходимой границы области срабатывания реле (рис. 1) может быть решена также на основе применения методов машинного обучения.

В терминах машинного обучения задачу формирования областей срабатывания, например, реле сопротивления можно рассматривать как определение принадлежности измерений реле к тем или иным классам в пространстве контролируемых параметров. Особенности глубокого обучения интеллектуального реле рассмотрим на примере линейного классификатора:

$$a(\mathbf{x}) = \operatorname{sign}[f(\mathbf{x}, \mathbf{w})],$$

возвращающего признак принадлежности нового объекта \mathbf{x}_j к определенному классу. Здесь $f(\mathbf{x},\mathbf{w})$ — дискриминантная функция, \mathbf{w} — вектор весов классификатора. Знак дискриминантной функции придает объекту \mathbf{x}_j признак y_j принадлежности к определенному классу, обращая его в прецедент по следующим правилам:

$$f(\mathbf{x}_{j}, \mathbf{w}) > 0$$
, TO $y_{j} = 1$;
 $f(\mathbf{x}_{i}, \mathbf{w}) < 0$, TO $y_{i} = -1$,

или в универсальной форме:

$$y_i f(\mathbf{x}_i, \mathbf{w}) > 0$$
.

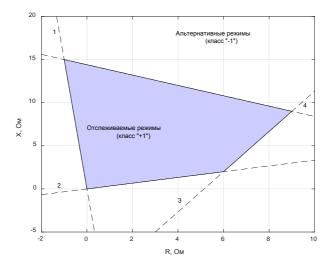


Рис. 1. Отображение отслеживаемых и альтернативных режимов электрической сети на характеристике реле сопротивления. Номера прямых соответствуют номерам уравнений в системе неравенств (1)

Необходимые свойства классификатору придает его предварительное обучение на выборке прецедентов $(\mathbf{X};\mathbf{y})$. Целью обучения является нахождение среди всех возможных разделяющих прямых

$$f(\mathbf{x}, \mathbf{w}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_0 = 0$$

такой, которая расположена на максимально возможном расстоянии от ближайших прецедентов $(\mathbf{x}_s; y_s)$ обоих классов, называемых опорными векторами. Здесь $\langle . \rangle$ — оператор скалярного произведения, w_0 — скаляр, характеризующий смещение разделяющей прямой.

Особенность глубокого обучения защиты на основе линейного классификатора иллюстрируется рис. 2. Принципиальное несовершенство классификатора заключается в неспособности к линейному разделению распределенных множеств прецедентов, что потребует специфического участия учителя. Оно заключается в том, что разграничение прецедентов множеств альтернативных режимов, распределенных вокруг прецедентов отслеживаемых режимов, возможно только в результате последовательного обучения классификатора (a–e) непосредственно под управлением учителя.

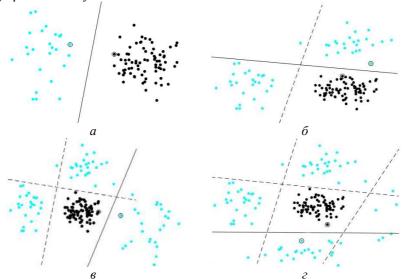


Рис. 2. Особенности обучения интеллектуального реле сопротивления на основе линейного классификатора (темные точки — прецеденты отслеживаемых режимов (класс (+1)), светлые точки — альтернативные режимы (класс (+1)), кружочки — опорные векторы, сплошная линия — разделяющая линия текущего этапа, штриховые линии — аналогичные линии прошлых этапов)

В результате обучения интеллектуальное реле приобретет характеристику срабатывания, приведенную на рис. 3, a.

При классификации большинства реальных данных линейная разделимость невозможна. Выход из этого положения находят в использовании алгоритма глубокого обучения с ядрами. Интеллектуальная релейная защита в этом случае приобретает способность к разграничению сложных несвязанных областей. Так, характеристика срабатывания в виде многоугольника (рис. 3, a) для интеллектуального реле на основе линейных классификаторов будет с присущим ему изяществом сформирована нелинейным классификатором (рис. 3, δ).

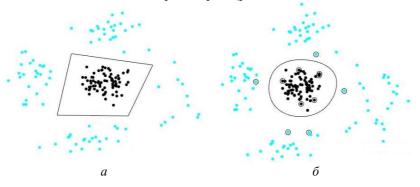


Рис. 3. Характеристики интеллектуальных реле сопротивления, использующих линейные (a) и нелинейные (δ) классификаторы. Обозначения соответствуют обозначениям рис. 2

Главной особенностью нелинейного классификатора

$$f(\mathbf{x}, \mathbf{w}) = \langle \mathbf{w}, \mathbf{\phi}(\mathbf{x}) \rangle + w_0 = 0$$

является применение специальных ядер. В результате прецеденты из исходного пространства отображаются в пространство более высокой размерности, где множество становится линейно разделимым (рис. 4) [5].

Прецеденты из исходного пространства (a) отображаются с помощью ядер в новом спрямляющем пространстве (δ) , в котором впоследствии становятся линейно разделимым (ϵ) . Рис. 4, a демонстрирует проекцию спрямляющего пространства на плоскость (R, X). Обозначения даны на рис. 2.

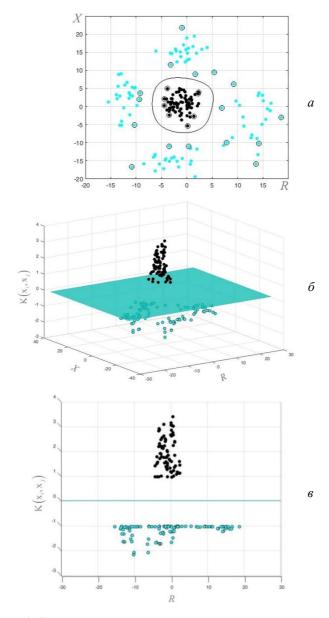


Рис. 4. Спрямляющее пространство, найденное нелинейным классификатором

Важно, что в случае применения нелинейного классификатора исключается необходимость знания самой функции $\phi(x)$, формирующей ядро, поскольку дискриминантная функция полностью определяется непосредственно через ядро. Таким образом, использование в ходе работы реле нелинейного классификатора упрощает реализацию метода искусственного интеллекта в терминалах релейной защиты.

Выводы

- 1. Интеллектуальная релейная защита на стадии разработки своего алгоритмического обеспечения использует для глубокого обучения имитационное моделирование и в ходе своей эксплуатации требует сопровождения учителем, придающим объектам измерения признаки прецедента.
- 2. Глубокое обучение релейной защиты требует применения нейронных сетей, способных решать задачу разграничения несвязанных областей контролируемых релейной защитой отслеживаемых и альтернативных режимов электрической сети даже в случае нахождения в них анклавов противоположных режимов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Антонов В.И. Адаптивный структурный анализ электрических сигналов: теория для инженера / В.И. Антонов, В.А. Наумов, М.Н. Кудряшова, Д.А. Степанова. // Журнал «Релейная защита и автоматизация». 21 июня 2019 г. № 2 (35). С. 18-27.
- 2. Антонов В.И. Адаптивный структурный анализ электрических сигналов: теория и ее приложения в интеллектуальной электроэнергетике: монография / В.И. Антонов. Чувашский государственный университет им. И.Н. Ульянова. Чебоксары, 2018. 334 с.
- 3. Степанова, Д.А. Задачи классификации и глубокого обучения в релейной защите цифровой электроэнергетики / Д.А. Степанова, В.А. Наумов, В.И. Антонов. // РЕЛАВЭКСПО-2019: Релейная защита и автоматизация электроэнергетических систем России: сб. докл. научнотехн. конф. молодых специалистов. Чебоксары. 23-26 апр. 2019. С. 116-122.
- 4. Степанова, Д.А. К теории глубокого обучения релейной защиты / Д.А. Степанова, В.А. Наумов, В.И. Антонов. // Динамика нелинейных дискретных электротехнических и электронных систем: мате-

риалы 13-й Всерос. науч.-техн. конф. Чебоксары: Изд-во Чуваш. ун-та, 2019. – С. 319-327.

5. *Вьюгин, В.В.* Математические основы теории машинного обучения и прогнозирования / В.В. Вьюгин. – М.: МЦНМО, 2013. – 387 с.

Авторы:

Степанова Дарья Александровна, техник группы разработки интеллектуальных электрических устройств сектора научного сопровождения продукции департамента отдела автоматизации энергосистем ООО НПП «ЭКРА», бакалавр факультета энергетики и электротехники ЧГУ им. И.Н. Ульянова по профилю «Релейная защита и автоматизация электроэнергетических систем». E-mail: stepanova_da@ekra.ru.

Наумов Владимир Александрович, кандидат технических наук, заместитель генерального директора - технический директор ООО НПП «ЭКРА». В 2001 г. окончил электроэнергетический факультет ЧГУ им. И.Н. Ульянова. В 2002 г. защитил магистерскую диссертацию. В 2005 г. защитил во ВНИИЭ кандидатскую диссертацию «Анализ и совершенствование продольных дифференциальных защит генераторов и блоков генератор-трансформатор». E-mail: naumov_va@ekra.ru.

Антонов Владислав Иванович, доктор технических наук, профессор кафедры теоретических основ электротехники и релейной защиты и автоматики ЧГУ им. И.Н. Ульянова, главный специалист департамента автоматизации энергосистем ООО НПП «ЭКРА». В 1978 г. окончил факультет электрификации и автоматизации промышленности ЧГУ им. И.Н. Ульянова. В 2018 г. защитил в ЧГУ им. И.Н. Ульянова докторскую диссертацию «Теория и приложения адаптивного структурного анализа сигналов в интеллектуальной электроэнергетике». Е-таil: antonov_vi@ekra.ru.